留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
沈吉, V. Zabudsky VIACHESLAV, 常维静, 那启跃, 简云飞, V. Rikhalsky OLEG, G. Golenkov OLEKSANDR, P. Reva VOLODYMYR. 亿博体育登陆注册开户[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2023-0016
引用本文: 沈吉, V. Zabudsky VIACHESLAV, 常维静, 那启跃, 简云飞, V. Rikhalsky OLEG, G. Golenkov OLEKSANDR, P. Reva VOLODYMYR. 亿博体育登陆注册开户[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2023-0016
SHEN Ji, VIACHESLAV V. Zabudsky, CHANG Wei-jing, NA Qi-yue, JIAN Yun-fei, OLEG V. Rikhalsky, OLEKSANDR G. Golenkov, VOLODYMYR P. Reva. 亿博体育串子[J]. Chinese Optics. doi: 10.37188/CO.EN-2023-0016
Citation: SHEN Ji, VIACHESLAV V. Zabudsky, CHANG Wei-jing, NA Qi-yue, JIAN Yun-fei, OLEG V. Rikhalsky, OLEKSANDR G. Golenkov, VOLODYMYR P. Reva. 亿博体育串子[J]. Chinese Optics. doi: 10.37188/CO.EN-2023-0016

亿博体育登陆注册开户

亿博体育串子

doi: 10.37188/CO.EN-2023-0016
Funds:Supported by
More Information
    Author Bio:

    沈 吉(1988—),男,江苏海门人,硕士研究生,高级工程师,从事光电探测器件与组件科研开发。E-mail:[email protected]

    Corresponding author: [email protected]
  • 摘要:

    开发了的测试系统用于测量CCD和EMCCD(电子倍增CCD)芯片的光电参数。测试系统可以切换自动或手动模式来测量器件的暗电流、读出放大器响应度、电荷转移效率、电荷容量和其他参数。测试系统可以针对不同规格和结构的CCD/EMCCD器件,完成CCD晶圆或封装好的成品的参数测试,实现576×288、640×512、1024×1024、1280×1024 CCD/EMCCD的测试和筛选。

  • Figure 1. Block diagram of the entire measurement system

    Figure 2. The block diagram of the direct and pulse voltage source unit

    Figure 3. Block diagram of the FPGA board

    Figure 4. Block diagram of the device (outlined by a dashed line) implemented in FPGA

    Figure 5. Amplification of DACs output voltages

    Figure 6. High voltage amplifier circuit

    Figure 7. Schematic diagram of the experimental driver on the base of GaN HEMT

    Figure 8. The proposed driver’s power consumption caused the circuit to require an effective heat sink.

    Figure 9. Flow chart for measuring maximum output voltage, charge capacity, and output amplifier responsivity.

    Figure 10. Results of measuring system tests. Volt-charge responsivity for normal and gain modes, average dark signal, and dependence of gain vs. R02HV voltage were measured.

    Table  1. Parameters of 16 DC channels

    Channel
    quantity
    Setting range,
    V
    Total relative
    error
    Noise,
    mV/300 kHz
    1 −5···+10 typical: ±0.1%;
    maximal: ±0.5%
    from Vmax
    <0.15
    3 0···+15 <0.15
    4 −5···+15 <0. 20
    4 0···+25 <0.40
    4 0···35 <0.70
    下载: 导出CSV

    Table  2. Parameters of 16 AC channels

    Channel quantity Setting range, V Wave front, ns Load (each channel)
    3 HL, LL: –5...+10 120..200 up to 24 nF
    4 HL: –5...+10 or 0...+15
    LL: –5...+10 or 0...+15
    <15 220 pF
    1 HL: 0...+15
    LL: 0...+15
    <15 220 pF
    6 HL: +5
    LL: 0
    <5 150 pF
    1 HL: –5...+ 15;
    LL, ML: –5...+10
    (three level signal)
    120..200 up to 24 nF
    1 HL: –5...+45
    LL: –5...+ 45
    (square or sine wave)
    20 100 pF
    下载: 导出CSV

    Table  3. Electrical parameters of EMCCD matrices measurable by the test system

    No Parameter Range
    1 Resistances between the pairs of chip contact pads
    2 Average Dark Signal > 1 e/pixel/s
    3 Dark Signal Non-uniformity (DSNU)
    4 Multiplication Gain 1~1000
    5 Peak Output Voltage (POV) <1 V
    6 Output Amplifier Responsivity (OAR) μV/e-
    7 Register Charge Handling
    8 Electric Charge Transfer Efficiency (CTE) ≤ 0.99995
    下载: 导出CSV

    Table  4. Example of test system measurements

    1. POV nm, norm mode (max) = 0.177 V;
    2. SCis (saturation charge) = 132151 e`/pixel;
    3. POV hgm, high gain mode (max) = 1.782 V;
    4. CHCgr, Charge Handling Capability of gain
    register = 1280481 e`/pixel;
    5. White column defects = 3
    6. Dark column defects quantity = 18
    7. Average Dark Signal (U) = 0.002939 V/pixel/s
    8. Average Dark Signal (e`) = 2396 e`/pixel/s
    9. OAR (output amplifier responsivity) = 1.416 uV/e` (NM: 1.226 uV/e`)
    10. Dark signal non-uniformity (DSNU) (rms) = 67.334 %
    11. Charge transfer efficiency (CTE) = 99.908 %
    下载: 导出CSV
  • [1] DENVIR D J, CONROY E. Electron-multiplying CCD: The new ICCD[C]. Proceedings of the SPIE 4796, Low-Light-Level and Real-Time Imaging Systems, Components, and Applications, SPIE, 2003: 164-174,doi: 10.1117/12.457779.
    [2] ROBBINS M S, HADWEN B J. The noise performance of electron multiplying charge-coupled devices[J]. IEEE Transactions on Electron Devices, 2003, 50(5): 1227-1232. doi: 10.1109/TED.2003.813462
    [3] BOGAART E W, HOEKSTRA W, PETERS I M, et al. Very low dark current CCD image sensor[J]. IEEE Transactions on Electron Devices, 2009, 56(11): 2462-2467. doi: 10.1109/TED.2009.2030642
    [4] SEITZ P, THEUWISSEN A J P. Single-Photon Imaging[M]. Berlin: Springer, 2011: 354.
    [5] SHIMIZU R, ARIMOTO M, NAKASHIMA H, et al. A charge-multiplication CMOS image sensor suitable for low-light-level imaging[J]. IEEE Journal of Solid-State Circuits, 2009, 44(12): 3603-3608. doi: 10.1109/JSSC.2009.2035541
    [6] BRUGIÈRE T, MAYER F, FEREYRE P, et al. A theory of multiplication noise for electron multiplying CMOS image sensors[J]. IEEE Transactions on Electron Devices, 2014, 61(7): 2412-2418. doi: 10.1109/TED.2014.2320966
    [7] STEFANOV K D, DUNFORD A, HOLLAND A D. Electron multiplying low-voltage CCD with increased gain[J]. IEEE Transactions on Electron Devices, 2018, 65(7): 2990-2996. doi: 10.1109/TED.2018.2839023
    [8] WILKINS A N, MCELWAIN M W, NORTON T J, et al. Characterization of a photon counting EMCCD for space-based high contrast imaging spectroscopy of extrasolar planets[C]. Proceedings of the SPIE 9154, High Energy, Optical, and Infrared Detectors for Astronomy VI, SPIE, 2014: 91540C,doi: 10.1117/12.2055346.
    [9] DUSSAULT D, HOESS P. Noise performance comparison of ICCD with CCD and EMCCD cameras[C]. Proceedings of the SPIE 5563, Infrared Systems and Photoelectronic Technology, SPIE, 2004: 195-204,doi: 10.1117/12.561839.
    [10] SOESBE T C, LEWIS M A, RICHER E, et al. Development and evaluation of an EMCCD based gamma camera for preclinical SPECT imaging[J]. IEEE Transactions on Nuclear Science, 2007, 54(5): 1516-1524. doi: 10.1109/TNS.2007.906408
    [11] REVA V P, KORINETS S V, GOLENKOV A G, et al. CCD Photomatrixes with electron multiplication[J]. Технология и Конструирование в Электронной Аппаратуре, 2017(1-2): 33-37,doi: 10.15222/TKEA2017.1-2.33. (查阅网上资料,未能确认刊名修改是否正确,请确认) .

    REVA V P, KORINETS S V, GOLENKOV A G, et al.. CCD Photomatrixes with electron multiplication[J]. Технология и Конструирование в Электронной Аппаратуре, 2017(1-2): 33-37,doi: 10.15222/TKEA2017.1-2.33. (查阅网上资料,未能确认刊名修改是否正确,请确认).
    [12] WU Q, FENG Z H, LI X W. Design and test of an EMCCD CCD201 sensor driving circuit[C]. Proceedings of the International Conference on Communication and Electronic Information Engineering, Atlantis Press, 2017: 319-326,doi: 10.2991/ceie-16.2017.40.
    [13] HOPE S C, GUNN J E, LOOMIS C P, et al. CCD readout electronics for the subaru prime focus spectrograph[C]. Proceedings of the SPIE 9154, High Energy, Optical, and Infrared Detectors for Astronomy VI, SPIE, 2014: 91542G,doi: 10.1117/12.2057166.
    [14] RYAN D P, DUNLAP M K, GELFAND M P, et al. A gain series method for accurate EMCCD calibration[J]. Scientific Reports, 2021, 11(1): 18348. doi: 10.1038/s41598-021-97759-6
    [15] PE29102: Product specification[EB/OL].https://www.psemi.com/pdf/datasheets/pe29102ds.pdf. (查阅网上资料,未找到本条文献日期信息,请确认) .

    PE29102: Product specification[EB/OL].https://www.psemi.com/pdf/datasheets/pe29102ds.pdf. (查阅网上资料,未找到本条文献日期信息,请确认).
    [16] Using peregrine’s high-speed FET drivers[EB/OL].https://www.psemi.com/pdf/app_notes/an71.pdf. (查阅网上资料,未找到本条文献日期信息,请确认) .

    Using peregrine’s high-speed FET drivers[EB/OL].https://www.psemi.com/pdf/app_notes/an71.pdf. (查阅网上资料,未找到本条文献日期信息,请确认).
  • 加载中
图(10) /表(4)
计量
  • 文章访问数: 214
  • HTML全文浏览量: 56
  • PDF下载量: 38
  • 被引次数: 0
亿博体育串子网页版
  • 收稿日期: 2023-07-04
  • 录用日期: 2023-08-28
  • 网络出版日期: 2023-09-12

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!