2激光技术"> 2激光技术"> 2激光技术">

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
杜超, 赵爽, 宋桦可, 王秋雨, 贾斌, 张丽, 崔丽琴, 赵强, 邓霄. 亿博体育串子体育真人[J]. 中国光学(中英文), 2024, 17(2): 291-299. doi: 10.37188/CO.2023-0101
引用本文: 杜超, 赵爽, 宋桦可, 王秋雨, 贾斌, 张丽, 崔丽琴, 赵强, 邓霄. 亿博体育串子体育真人[J]. 中国光学(中英文), 2024, 17(2): 291-299. doi: 10.37188/CO.2023-0101
DU Chao, ZHAO Shuang, SONG Hua-ke, WANG Qiu-yu, JIA Bin, ZHANG Li, CUI Li-qin, ZHAO Qiang, DENG Xiao. 亿博体育串子[J]. Chinese Optics, 2024, 17(2): 291-299. doi: 10.37188/CO.2023-0101
Citation: DU Chao, ZHAO Shuang, SONG Hua-ke, WANG Qiu-yu, JIA Bin, ZHANG Li, CUI Li-qin, ZHAO Qiang, DENG Xiao. 亿博体育串子[J]. Chinese Optics, 2024, 17(2): 291-299. doi: 10.37188/CO.2023-0101

亿博体育串子体育真人

doi: 10.37188/CO.2023-0101
基金项目:国家自然科学基金(No. 62203320, No. 62375198, No. 52009088, No. 61933004);中国博士后科学基金面上项目(No. 2019M661063);山西省回国留学人员科研资助项目(No. 2023-039);崂山实验室科技创新项目(No. LSKJ202204703)
详细信息
    作者简介:

    杜 超(1988-),男,山西朔州人,博士,副教授,硕士生导师,2019年于东北大学信息科学与工程学院获得博士学位,主要从事特种光纤传感器设计及其特性方面的研究。E-mail:[email protected]

    邓 霄(1980-),男,山西太原人,博士,教授,博士生导师,2014年于太原理工大学信息工程学院获得博士学位,主要从事光机电传感技术方面的研究。E-mail:[email protected]

  • 中图分类号:TN253

亿博体育串子

Funds:Supported by National Natural Science Foundation of China (No. 62203320, No. 62375198, No. 52009088, No. 61933004); Project funded by China Postdoctoral Science Foundation (No. 2019M661063); Research Project Supported by Shanxi Scholarship Council of China (No. 2023-039); Science and Technology Innovation Project of Laoshan Laboratory (Qingdao) (No. LSKJ202204703)
More Information
  • 摘要:

    为研制高灵敏海水盐度传感器,本文基于CO2激光技术成功制备出一种工作在色散转折点(DTP)附近的长周期光纤光栅(LPFG)。首先,利用CO2激光器在80 μm细单模光纤上制备出工作在DTP附近的LPFG,证明了采用CO2激光微加工技术制备较短周期LPFG的可能性。其次,通过调控CO2激光器的制备周期,使高阶包层模式LP1,9工作在DTP附近,从而显著提高了LPFG的折射率灵敏度。在双峰谐振增敏效应的作用下,当海水盐度从5.001‰变化到39.996‰时,光栅周期为115.4 μm的双峰谐振LPFG平均灵敏度高达0.279 nm/‰。研究结果表明,本文制备的LPFG海水盐度传感器具有谐振损耗大和灵敏度高的优点,其在海水盐度监测领域具有较好的应用前景。

  • 图 1 CO2激光器制备的LPFG结构

    Figure 1. LPFG structure fabricated using CO2 laser

    图 2 基于80 μm单模光纤的LPFG的PMCs

    Figure 2. PMCs of LPFG based on 80 μm single mode fiber

    图 3 海水折射率与盐度的关系

    Figure 3. Seawater refractive index as a function of salinity

    图 4 当折射率从1.33变化到1.34时:(a)包层模式为LP1,9的LPFG的PMCs;(b)折射率灵敏度与光栅周期之间的关系

    Figure 4. (a) PMCs of LPFG with LP1,9 cladding mode and (b) seawater refractive index sensitivity as a function of grating period when refractive index changes from 1.33 to 1.34

    图 5 传感探头及测量装置示意图

    Figure 5. Schematic diagram of sensing probe and measuring device

    图 6 周期为112 μm的LPFG折射率响应特性。(a)LPFG透射光谱在不同折射率下的变化情况;(b)谐振波长与折射率的关系

    Figure 6. Refractive index response characteristics of LPFG with a period of 112 μm. (a) Transmission spectra of LPFG under various refractive indices; (b) resonance wavelength as a function of refractive index

    图 7 周期为113 μm的LPFG折射率响应特性。(a)LPFG透射光谱在不同折射率下的变化情况;(b)谐振波长与折射率的关系

    Figure 7. Refractive index response characteristics of LPFG with a period of 113 μm. (a) Transmission spectra of LPFG under various refractive indices; (b) resonance wavelength as a function of refractive index

    图 8 周期为115.4 μm的LPFG折射率响应特性。(a)LPFG透射光谱在不同折射率下的变化情况;(b)谐振波长与折射率的关系

    Figure 8. Refractive index response characteristics of LPFG with a period of 115.4 μm. (a) Transmission spectra of LPFG under various refractive indices; (b) resonance wavelength as a function of refractive index

    图 9 周期为115.6 μm的LPFG折射率响应特性。(a)LPFG透射光谱在不同折射率下的变化情况;(b)谐振波长与折射率的关系

    Figure 9. Refractive index response characteristics of LPFG with a period of 115.6 μm. (a) Transmission spectra of LPFG under various refractive indices; (b) resonance wavelength as a function of refractive index

    图 10 周期为115.4 μm的LPFG性能测试结果。(a)重复性;(b)稳定性

    Figure 10. Performance test results of LPFG with a period of 115.4 μm. (a) Repeatability; (b) stability

    图 11 周期为115.4 μm的LPFG温度响应特性。(a)LPFG透射光谱在不同温度下的变化情况;(b)谐振波长与温度的关系

    Figure 11. Temperature response characteristics of LPFG with a period of 115.4 μm. (a) Transmission spectra of LPFG under different temperature; (b) resonance wavelength as a function of temperature

    表  1 不同方法制备的海水盐度传感器灵敏度对比

    Table  1. Comparison of sensitivity for seawater salinity sensors fabricated by different methods

    制备过程 包层直径 (μm) 灵敏度 范围 参考文献
    理论工作:
    1. 减小包层直径
    29.24 3750 nm/RIU 1.33~1.35 [ 17 ]
    理论工作:
    1. 减小包层直径
    2. 涂覆高折射率薄膜
    34.8 143000 nm/RIU 1.33~1.331
    1. CO2激光刻写
    2. 涂覆水凝胶薄膜
    125 0.1255 nm/‰ 22.8~44.7‰ [ 14 ]
    1. CO2激光刻写
    2. 氢氟酸腐蚀包层
    3. 涂覆TiO2薄膜
    72 0.1633 nm/‰ 5.001~39.996‰ [ 15 ]
    1. 紫外激光刻写
    2. 氢氟酸腐蚀包层
    71.75
    32.5
    1343 nm/RIU
    8734 nm/RIU
    1.353~1.398 [ 28 ]
    1. 飞秒激光刻写
    2. 涂覆TiO2薄膜
    125 3151.8 nm/RIU 1.33~1.37 [ 29 ]
    1. CO2激光刻写
    2. 调整光栅周期
    80 2025.549 nm/RIU
    0.279 nm/‰
    1.33356~1.33849
    5.001~39.996‰
    本项工作
    下载: 导出CSV
  • [1] SOHAIL T, ZIKA J D, IRVING D B, et al. Observed poleward freshwater transport since 1970[J]. Nature, 2022, 602(7898): 617-622. doi: 10.1038/s41586-021-04370-w
    [2] KATSUMATA K, PURKEY S G, COWLEY R, et al. GO-SHIP easy ocean: gridded ship-based hydrographic section of temperature, salinity, and dissolved oxygen[J]. Scientific Data, 2022, 9(1): 103. doi: 10.1038/s41597-022-01212-w
    [3] LI Y, WU G F, SONG G, et al. Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments[J]. ACS Sensors, 2022, 7(8): 2400-2409. doi: 10.1021/acssensors.2c01059
    [4] DINNAT E P, LE VINE D M, BOUTIN J, et al. Remote sensing of sea surface salinity: comparison of satellite and in situ observations and impact of retrieval parameters[J]. Remote Sensing, 2019, 11(7): 750. doi: 10.3390/rs11070750
    [5] DEMIR O, JOHNSON J T, JEZEK K C, et al. Studies of sea-ice thickness and salinity retrieval using 0.5-2 GHz microwave radiometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304412.
    [6] QIAN Y, ZHAO Y, WU Q L, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B:Chemical, 2018, 260: 86-105. doi: 10.1016/j.snb.2017.12.077
    [7] QUAN X H, FRY E S. Empirical equation for the index of refraction of seawater[J]. Applied Optics, 1995, 34(18): 3477-3480. doi: 10.1364/AO.34.003477
    [8] ZHENG H K, ZHAO Y, LV R Q, et al. Study on the temperature and salinity sensing characteristics of multifunctional reflective optical fiber probe[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9514308.
    [9] ZHAO Y, ZHAO J, WANG X X, et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements[J]. Sensors and Actuators B:Chemical, 2022, 353: 131134. doi: 10.1016/j.snb.2021.131134
    [10] ZHANG S Q, PENG Y, WEI X, et al. High-sensitivity biconical optical fiber SPR salinity sensor with a compact size by fiber grinding technique[J]. Measurement, 2022, 204: 112156. doi: 10.1016/j.measurement.2022.112156
    [11] WANG Y, TONG R J, ZHAO K J, et al. Optical fiber sensor based on SPR and MZI for seawater salinity and temperature measurement[J]. Optics & Laser Technology, 2023, 162: 109315.
    [12] SUN M Y, JIANG H T, SHI B, et al. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer[J]. Measurement, 2019, 140: 526-537. doi: 10.1016/j.measurement.2019.03.020
    [13] AN G W, LIU L, HU P, et al. Probe type TFBG-excited SPR fiber sensor for simultaneous measurement of multiple ocean parameters assisted by CFBG[J]. Optics Express, 2023, 31(3): 4229-4237. doi: 10.1364/OE.481948
    [14] YANG F, HLUSHKO R, WU D, et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels[J]. ACS Omega, 2019, 4(1): 2134-2141. doi: 10.1021/acsomega.8b02823
    [15] ZHAO SH, DU CH, WANG Q Y, et al. A long period fiber grating seawater salinity sensor based on bend insensitive single mode fiber[J]. Optical Fiber Technology, 2023, 77: 103269. doi: 10.1016/j.yofte.2023.103269
    [16] LI Q SH, YANG Y, DU Y D, et al. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating[J]. Talanta, 2023, 254: 124126. doi: 10.1016/j.talanta.2022.124126
    [17] DEL VILLAR I. Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point[J]. Optics Express, 2015, 23(7): 8389-8398. doi: 10.1364/OE.23.008389
    [18] CHEN J Y, BAI ZH Y, ZHU G X, et al. Femtosecond laser inscribed helical long period fiber grating for exciting orbital angular momentum[J]. Optics Express, 2022, 30(3): 4402-4411. doi: 10.1364/OE.449619
    [19] 张亚妮, 刘思聪, 赵亚, 等. 800 nm高能量飞秒激光脉冲刻写长周期光纤光栅机理[J]. 光子学报,2018,47(1):0106003. doi: 10.3788/gzxb20184701.0106003

    ZHANG Y N, LIU S C, ZHAO Y, et al. Fabrication mechanism of long-period fiber grating based on 800 nm high intensity femto-second laser pulses[J]. Acta Photonica Sinica, 2018, 47(1): 0106003. (in Chinese). doi: 10.3788/gzxb20184701.0106003
    [20] 张亚妮, 郗亚茹, 江鹏, 等. 飞秒激光直写长周期光纤光栅及其光谱特性[J]. 光子学报,2018,47(11):1106001. doi: 10.3788/gzxb20184711.1106001

    ZHANG Y N, XI Y R, JIANG P, et al. Fabrication of long period fibre gratings by femtosecond laser writing directly and its spectral characteristics[J]. Acta Photonica Sinica, 2018, 47(11): 1106001. (in Chinese). doi: 10.3788/gzxb20184711.1106001
    [21] ZHANG Y N, JIANG P, QIAO D, et al. Sensing characteristics of long period grating by writing directly in SMF-28 based on 800 nm femtosecond laser pulses[J]. Optics & Laser Technology, 2020, 121: 105839.
    [22] ŚMIETANA M, DOMINIK M, MIKULIC P, et al. Temperature and refractive index sensing with Al2O3-nanocoated long-period gratings working at dispersion turning point[J]. Optics & Laser Technology, 2018, 107: 268-273.
    [23] DU CH, WANG Q, ZHAO Y, et al. Ultrasensitive long-period gratings sensor works near dispersion turning point and mode transition region by optimally designing a photonic crystal fiber[J]. Optics & Laser Technology, 2019, 112: 261-268.
    [24] 朱雨雨, 郗亚茹, 张亚妮, 等. 长周期光纤光栅光谱特性仿真研究[J]. 中国光学,2020,13(3):451-458.

    ZHU Y Y, XI Y R, ZHANG Y N, et al. Numerical simulation of transmission spectra characterization of long-period fiber grating[J]. Chinese Optics, 2020, 13(3): 451-458. (in Chinese).
    [25] ZHONG X Y, WANG Y P, LIAO CH R, et al. Long period fiber gratings inscribed with an improved two-dimensional scanning technique[J]. IEEE Photonics Journal, 2014, 6(4): 2201508.
    [26] DEL VILLAR I, FUENTES O, CHIAVAIOLI F, et al. Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point[J]. Journal of Lightwave Technology, 2018, 36(11): 2240-2247. doi: 10.1109/JLT.2018.2790434
    [27] PEREIRA D A, FRAZAO O, SANTOS J L. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature[J]. Optical Engineering, 2004, 43(2): 299-304. doi: 10.1117/1.1637903
    [28] DEL VILLAR I, CRUZ J L, SOCORRO A B, et al. Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point[J]. Optics Express, 2016, 24(16): 17680-17685. doi: 10.1364/OE.24.017680
    [29] VIVEIROS D, DE ALMEIDA J M M M, COELHO L, et al. Turn around point long period fiber gratings with coupling to asymmetric cladding modes fabricated by a femtosecond laser and coated with titanium dioxide[J]. Journal of Lightwave Technology, 2021, 39(14): 4784-4793. doi: 10.1109/JLT.2021.3078257
  • 加载中
图(11) /表(1)
计量
  • 文章访问数: 165
  • HTML全文浏览量: 68
  • PDF下载量: 62
  • 被引次数: 0
亿博体育登陆app下载中心
  • 收稿日期: 2023-06-12
  • 修回日期: 2023-07-06
  • 网络出版日期: 2023-11-06

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!